An Empirical Quest for Optimal Rule Learning Heuristics An Empirical Quest for Optimal Rule Learning Heuristics
نویسندگان
چکیده
The primary goal of the research reported in this paper is to identify what criteria are responsible for the good performance of a heuristic rule evaluation function in a greedy topdown covering algorithm. We first argue that search heuristics for inductive rule learning algorithms typically trade off consistency and coverage, and we investigate this trade-off by determining optimal parameter settings for five different parametrized heuristics. In order to avoid biasing our study by known functional families, we also investigate the potential of using meta-learning for obtaining alternative rule learning heuristics. The key results of this experimental study are not only practical default values for commonly used heuristics and a broad comparative evaluation of known and novel rule learning heuristics, but we also gain theoretical insights into factors that are responsible for a good performance. For example, we observe that consistency should be weighed more heavily than coverage, presumably because a lack of coverage can later be corrected by learning additional rules.
منابع مشابه
An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics
In this paper, we argue that search heuristics for inductive rule learning algorithms typically trade off consistency and coverage, and we investigate this trade-off by determining optimal parameter settings for five different parametrized heuristics. This empirical comparison yields several interesting results. Of considerable practical importance are the default values that we establish for t...
متن کاملLWA 2006 Proceedings
Evaluation metrics for rule learning typically, in one way or another, trade off consistency and coverage. In this work, we investigate this tradeoff for three different families of rule learning heuristics, all of them featuring a parameter that implements this trade-off in different guises. These heuristics are the m-estimate, the F -measure, and the Klösgen measures. The main goals of this w...
متن کاملOptimal Policy Rules for Iran in a DSGE Framework (Islamic Musharakah Approach)
The aim of this paper is determination of an optimal policy rule for Iranian economy from an Islamic perspective. This study draws on an Islamic instrument known as the Musharakah contract to design a dynamic stochastic general equilibrium model. In this model the interest rate is no longer considered as a monetary policy instrument and the focus is on the impact of economic shocks on the Dynam...
متن کاملAn Empirical Comparison of Hill-Climbing and Exhaustive Search in Inductive Rule Learning An Empirical Comparison of Hill-Climbing and Exhaustive Search in Inductive Rule Learning
Most commonly used inductive rule learning algorithms employ a hill-climbing search, whereas local pattern discovery algorithms employ exhaustive search. In this paper, we evaluate the spectrum of different search strategies to see whether separate-and-conquer rule learning algorithms are able to gain performance in terms of predictive accuracy or theory size by using more powerful search strat...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کامل